Subgroups of Finite Groups
نویسنده
چکیده
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملSome combinatorial aspects of finite Hamiltonian groups
In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...
متن کاملClassifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملCLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS
In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.
متن کاملThe influence of S-embedded subgroups on the structure of finite groups
Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...
متن کاملGroups with one conjugacy class of non-normal subgroups - a short proof
For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.
متن کامل